Latest Trends in Data Center Optics

IX Fórum 9
December 8, 2015

Christian Urricariet
Optics industry leader with $1B+ annual revenue

Founded in 1988

IPO in 1999 (NASDAQ: FNSR)

27% worldwide transceiver market share (2014)

Best-in-class broad product line

Vertically integrated with low cost manufacturing

Significant focus on R&D and capacity expansion

Experienced management team

14,000 employees

1300+ Issued U.S. patents
Broad Product Portfolio and Customer Base

DATACOM

PRODUCTS
- SFP
- SFP+
- QSFP/QSFP28
- CFP2/CFP4
- CFP
- Optical Engine (BOA)
- CXP
- Active Optical Cables
- XFP
- X2/XENPAK

CUSTOMERS
- EMC²
- Intel
- Extreme Networks
- Cisco
- Dell
- Brocade
- NetApp
- IBM
- Juniper Networks
- QLogic
- Oracle
- H3C
- Mellanox Technologies
- HP
- Infinera

TELECOM

PRODUCTS
- SFP
- XFP
- SFP+
- CFP2-ACO
- Coherent Transponder
- ROADM line card
- WSS
- WDM Passives
- Amplifiers
- High speed components
- Tunable laser
- CATV
- PON

CUSTOMERS
- Huawei
- Alcatel-Lucent
- Ericsson
- Hitachi
- Nokia
- Ciena
- Coriant
- ADC
- Fujitsu
- Cyan
- Infineon

© Finisar Corporation
Data Center Connections are Changing

- Data Center connections are moving from 10G/40G, to 25G/100G

- Within the Data Center Rack
 - 10GE being deployed now
 - 25GE to be deployed soon
 - 50GE to the server will follow

- Between Data Center Racks
 - 40GE being deployed now
 - 100GE to be deployed soon
 - What follows? 200GE or 400GE?

- Long Spans/Inter-Data Centers & WAN
 - 100GE being deployed until now
 - 400GE being standardized now
 - What follows? 800GE, 1TE or 1.6TE?
New Architectures in Hyperscale Data Centers

- Most large data center networks are architected on a 3-tier topology
- Cloud data center networks are migrating from traditional 3-tier to flattened 2-tier topology
 - Hyperscale Data Centers becoming larger, more modular, more homogenous
 - Workloads spread across 10s, 100s, sometimes 1000s of VMs and hosts
 - Higher degree of east-west traffic across network (server to server)

Traditional ‘3-tier’ Tree Network

- Core Layer (Routers)
- Aggregation Layer (Switches)
- Access Layer (Switches)

New ‘2-tier’ Leaf-Spine Network

- Servers and Compute (w/ NICs)
- East-West

North-South
The Hyperscale/Cloud Data Center

- **RACK** is the minimum building block.
- The goal is to connect as many racks together as possible.
- Heavy ‘East-West’ traffic (server to server).
- Minimum over-subscription.
- Each leaf switch fans out to all spine switches (high radix).
Connections in the Hyperscale/Cloud Data Center

Core Switch/Router to Spine Switch:
- **Deploying mostly 40GE LR4 today.**
- Will deploy 100GE CWDM4/LR4 soon.
- Roadmap is 200GE or 400GE next.

Spine Switch to Leaf Switch links:
- **Deploying mostly 40GE SR4/LR4 today.**
- Will deploy 100GE SR4/CWDM4 soon.
- Roadmap may be 200GE SR/LR next.

Leaf Switch to TOR Switch links:
- **Deploying mostly 40GE SR4 today.**
- Will deploy 100GE SR4/AOC soon.
- Roadmap may be 200GE SR next.

TOR Switch to Server links:
- **Deploying mostly 10GE SR/DAC today.**
- Will deploy 25GE SR/AOC soon.
- Roadmap is 50GE SR/AOC next.
Interconnect Trends in the Data Center Market

- Significant increase in 100G and 25G port density
Significant increase in 100G and 25G port density

- Smaller form factors, e.g., QSFP28 modules
- Power dissipation <3.5W
- Active Optical Cables
- On-board optics for very high port density
100G Optical Module Form Factor Evolution

- **CFP**
 - 4 ports/chassis
 - 24W

- **CFP2**
 - 8-10 ports/chassis
 - 8W

- **CFP4**
 - 16-18 ports/chassis
 - 5W

- **QSFP28**
 - 18-20 ports/chassis
 - 3.5W

Deployments until today
100G QSFP28 Module

100GE optical transceivers
- QSFP28 is standardized by SFF-8665 (SFF Committee)
- It has a 4-lane, retimed 25G I/O electrical interface (CAUI-4)
- Supports up to 3.5W power dissipation with standard cooling
- Also used for 4x 25GE applications

100GE active optical cables (no optical connector)

QSFP28 is the 100GE module form factor of choice for new data center switches
QSFP28: 100G and High-Density 25G

- QSFP28 = Quad SFP28
- QSFP28 is both a 100G and a high-density 25G form factor

Point-to-Point 100G

4x25G Breakout

4x25G Shuffle

General Case:
Breakout and Shuffle

QSFP28 will have very high volumes, because it supports both 100G and 25G links.
25G SFP28 Module

25GE optical transceivers
- SFP28 is standardized by the SFF Committee
- It has a 1-lane, retimed 25G I/O electrical interface
- Supports up to 1W power dissipation with standard cooling
- Used for 25GE ports in server and switches

25GE active optical cables

SFP28 is the 25GE module form factor of choice for new Servers / NICs
These optics are not pluggable; they are mounted on the host PCB

- Used today on core routers, supercomputers and some switches
- Very short host PCB traces enable low power dissipation
- Higher bandwidth density can be achieved by:
 - More channels: Up to 12+12 Tx/Rx, or 24Tx and 24Rx
 - Higher data rate per channel: 10G/ch and 25G/ch variants today, 50G/ch in the future
Interconnect Trends in the Data Center Market

- Significant increase in 100G and 25G port density
- Extension of optical links beyond the Standards
Optical Standards Proliferation

- Duplex and parallel optics products continue to proliferate
- This results in a proliferation of standards, *de facto* standards, MSAs, and proprietary codes, each optimized for a particular use case

10 Gb/s
- SR, USR, LR, LR Lite, LRM, ER, ZR, LX4, PR, 8xFC SMF, 8xFC MMF, SAS3, PCIe3, OTU2

40-56 Gb/s
- SR4 (100m), 4xSR Lite (100m), eSR4 (300m), 4xSR, LR4, 4xLR, 4xLR Lite, ER4, LM4, LM4 Univ, 4xQDR, 4xFDR, 4x16GFC SMF, 4x16GFC MMF, 4xSAS3, 4xPCIe3, OTU3, OTU3e2, SWDM4

100-128 Gb/s
- SR4, SR10, 10x10GSR, 12x10GSR, LR4, 10x10GLR, 4xEDR, ER4, ER4f, 4x32GFC, OTU4, PSM4, CLR4, CWDM4, SWDM4
40G Ethernet QSFP+ Modules

<table>
<thead>
<tr>
<th>Parallel (MPO)</th>
<th>Duplex (LC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td>Black = Standardized interfaces</td>
</tr>
<tr>
<td>SR4</td>
<td>Blue = MSA/Proprietary interfaces</td>
</tr>
<tr>
<td>• 100/150m</td>
<td>A duplex multimode product is required to re-use the same fiber plant used for 10GE</td>
</tr>
<tr>
<td>eSR4 & 4xSR</td>
<td>LM4</td>
</tr>
<tr>
<td>• 300/400m</td>
<td>• 140/160m/1km</td>
</tr>
</tbody>
</table>

Single Mode	
4xLR	**LR4**
• 10km	• 10km
4xLR Lite	**ER4**
• 2km	• 40km

Parallel links *can* be broken out to 4 separate 10G connections

Duplex WDM *cannot* be broken out to separate 10G connections

Multimode distances refer to OM3/OM4
Single mode distances refer to SMF28
100G Ethernet QSFP28 Modules

<table>
<thead>
<tr>
<th></th>
<th>Parallel (MPO)</th>
<th>Duplex (LC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR4 & 4x25G-SR</td>
<td>SR4 without FEC</td>
<td>A duplex multimode product is required to re-use the same fiber plant used for 10GE</td>
</tr>
<tr>
<td>70/100m</td>
<td>30/40m</td>
<td></td>
</tr>
<tr>
<td>Single Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSM4</td>
<td>LR4</td>
<td></td>
</tr>
<tr>
<td>500m</td>
<td>10km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CWDM4/CLR4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2km</td>
<td></td>
</tr>
</tbody>
</table>

Parallel links **can** be broken out to 4 separate 10G connections

Duplex WDM **cannot** be broken out to separate 10G connections

Black = Standardized interfaces

Blue = MSA/Proprietary interfaces

Multimode distances refer to OM3/OM4

Single mode distances refer to SMF28
Various recent 25G and 100G Ethernet standards and MSAs require the use of RS-FEC (aka, “KR4 FEC”) on the host to increase overall link length:

- RS-FEC does not increase the total bit rate, but it introduces an additional latency of ~100ns in the link.
 - Some applications like HFT have little tolerance for latency.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Link Length with RS-FEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3bm 100GBASE-SR4</td>
<td>100m on OM4 MMF</td>
</tr>
<tr>
<td>IEEE P802.3by 25GBASE-SR</td>
<td>100m on OM4 MMF</td>
</tr>
<tr>
<td>100G CWDM4 MSA</td>
<td>2km on SMF</td>
</tr>
<tr>
<td>100G PSM4 MSA</td>
<td>500m on SMF</td>
</tr>
</tbody>
</table>

- The fiber propagation time of each bit over 100m of MMF is ~500ns → The amount of additional latency introduced by RS-FEC may be significant for the overall performance of short links <100 meters (see next page).

- But the fiber propagation time of each bit over 500m of SMF is ~2500ns → The amount of latency introduced by RS-FEC is not significant for the overall performance of links >500 meters.
Low-Latency QSFP28 SR4 and SFP28 SR without FEC

- Support of 25G/100G Ethernet links *without FEC*
 - Lower latency
 - Lower host power dissipation

- Standard QSFP28 and SFP28 form factors
- Supports 4:1 fan-out configuration
- Up to 30 meters on OM3 / 40 meters on OM4 MMF
Interconnect Trends in the Data Center Market

- Significant increase in 100G and 25G port density
- Extension of optical links beyond the Standards
- Reutilization of existing 10G fiber plant on 40G and 100G
Why Duplex Multimode Fiber Matters

- Data centers today are architected around 10G Ethernet
- Primarily focused on 10GBASE-SR using *duplex MMF (LC)*
- Data center operators are migrating from 10G to 40G or 100G, but want to maintain their existing fiber infrastructure
 - SR4 requires ribbon multimode fiber with an MPO connector
 - *Not provided by pre-installed fiber plant*
 - LR4 requires single mode fiber
 - *Not provided by pre-installed fiber plant*

Data centers want to upgrade from 10G to 40 and 100G *without touching the duplex MMF fiber infrastructure*
Industry group to promote SWDM technology for duplex MMF in data centers.

SWDM uses 4 different wavelengths in the 850nm region, where MMF is optimized, which are optically multiplexed inside the transceiver.

SWDM enables the transmission of 40G (4x10G) and 100G (4x25G) over existing duplex multimode fiber, using LC connectors.

Finisar is a founding member of the SWDM Alliance.

More information at www.swdm.org
40G Ethernet QSFP+ Modules

<table>
<thead>
<tr>
<th>Parallel (MPO)</th>
<th>Duplex (LC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td></td>
</tr>
<tr>
<td>SR4</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>• 100/150m</td>
<td>• Limited use</td>
</tr>
<tr>
<td>eSR4 & 4xSR</td>
<td>SWDM4</td>
</tr>
<tr>
<td>• 300/400m</td>
<td>• Being tested</td>
</tr>
<tr>
<td>Single Mode</td>
<td></td>
</tr>
<tr>
<td>4xLR</td>
<td>LR4</td>
</tr>
<tr>
<td>• 10km</td>
<td>• 10km</td>
</tr>
<tr>
<td>4xLR Lite</td>
<td>ER4</td>
</tr>
<tr>
<td>• 2km</td>
<td>• 40km</td>
</tr>
</tbody>
</table>

- **Parallel links** *can* be broken out to 4 separate 10G connections
- **Duplex WDM** *cannot* be broken out to separate 10G connections

Black = Standardized interfaces

Blue = MSA/Proprietary interfaces

- Multimode distances refer to OM3/OM4
- Single mode distances refer to SMF28
100G Ethernet QSFP28 Modules

<table>
<thead>
<tr>
<th>Multimode</th>
<th>Parallel (MPO)</th>
<th>Duplex (LC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SR4 & 4x25G-SR</td>
<td>SWDM4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 70/100m</td>
<td>• Being tested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR4 without FEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 30/40m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single Mode</th>
<th>PSM4</th>
<th>LR4</th>
<th>CWDM4/CLR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 500m</td>
<td>• 10km</td>
<td>• 2km</td>
</tr>
</tbody>
</table>

Parallel links *can* be broken out to 4 separate 10G connections

Duplex WDM *cannot* be broken out to separate 10G connections

Multimode distances refer to OM3/OM4

Single mode distances refer to SMF28
Interconnect Trends in the Data Center Market

- Significant increase in 100G and 25G port density
- Extension of optical links beyond the Standards
- Reutilization of existing 10G fiber plant on 40G and 100G
- Moving beyond 100G, to 200G and 400G!
Distinct 200G/400G Applications in the Market

Service Provider Applications:
400GE Router-Router and Router-Transport client interfaces
- Critical requirements are time to market and supporting multiple reaches.
- Currently deploying tens of thousands of 100GE CFP/CFP2/CFP4.
- First generation 400GE client module will need to provide a port density advantage with respect to using 4x QSFP28.

Data Center and Enterprise:
200GE uplinks and 4x100GE fan-outs
- Critical requirement is high port count/density.
- Currently planning on deploying 25G SFP28 on the server and 100G QSFP28 on switches starting in CY2016.
- A 400G “QSFP112” module will take several years to be feasible due to power dissipation and size limitations.
- A better product for the switch may be a **200GE QSFP56** module that could also support 4x50GE fan-out.
- Servers have a roadmap to 50GE I/O already.
200GE and 400GE Standardization

- The 400GE Standard is already being defined in IEEE P802.3bs
 - Standard is expected to be ratified in December 2017
 - Link objectives:
 - 400GBASE-SR16: 100m on parallel MMF
 - 400GBASE-DR4: 500m on parallel SMF
 - 400GBASE-FR8: 2km on duplex SMF
 - 400GBASE-LR8: 10km on duplex SMF
 - Electrical I/O:
 - CDAUI-8: 8x50G PAM-4
 - CDAUI-16: 16x25G NRZ
 - Optical I/O:
 - SR16 will be based on 16x25G NRZ
 - LR8 & FR8 will be based on 8x50G LAN-WDM PAM-4
 - DR4 will be based on 4x100G PSM PAM-4

- 50G and 200G Ethernet standardization is now being studied by IEEE
- Optics suppliers are already working on components to support these new rates
 - Based on VCSELs, DFB laser and SiP technologies
 - ICs and test platforms that support PAM-4 encoding
CFP8 module dimensions are similar to CFP2.

- Enables **6.4 Tb/s** per host board (8x2 modules in a 1RU configuration).
 - Supported ports: 16x400G, 64x100G, 128x50G, 256x25G
- Supports standard IEEE 400G **multimode and single mode** interfaces
- Supports either **CDAUI-16** (16x25G) or **CDAUI-8** (8x50G) electrical I/O.
- It is being standardized by the **CFP MSA**
Summary

- Large growth in web content and applications is driving:
 - Growth in bandwidth and changes in data center architectures
 - Subsequent growth in number of optical links
 - Large increase in power requirements

- 25G, 40G and 100G optics support this growth today with:
 - Smaller module form factors for higher port density
 - Lower power consumption and cost per bit
 - Increased performance to leverage existing infrastructure

- New Ethernet speeds are being standardized: 50G, 200G, 400G

Questions?

Contact Us
- E-mail: sales@finisar.com
- www.finisar.com
Thank You